Mathematical Vocabulary

Year 3

Mathematics vocabulary list Year 3

Maths is its own language. Sometimes that language looks like written word and sometimes it looks like symbols, but it is a language and it must be learned for math fluency and competency. If a child does not have a good understanding of key mathematical vocabulary, it can hinder them in making good progress in maths and in other areas of the curriculum.

At Chapel End, we explicitly teach maths vocabulary, giving it a context and allowing children to apply it in a variety of problems.

Listed below are the key mathematical terms a child will learn in Year 3. This is the minimum we expect children to learn; however, we know children are curious and will undoubtedly want to learn more and we encourage this.

Vocabulary	Definition	Example
Number and Place Value		
Approximate	Anything that is similar, but not exactly equal, to something else.	'The approximate answer to 199 + 100 is 300 because 199 is very close to 200.'
Formal written method	A way of carrying out a calculation which is done on paper rather than entirely mentally.	874 - 523 becomes $\begin{array}{r} 874 \\ -\quad 523 \\ \hline 351 \\ \hline \end{array}$ Answer: 351
Numbers 101-1,000	'One hundred and one, one hundred and two... nine hundred and ninetynine, one thousand.'	
Place holder	A place holder is a zero used in any place value column (that contains a value of zero) to clarify the relative positions of the digits in other places.	I need to use a place holder in the ones column to make it clear that my number is 320 and not 32 .
Relationship	A mathematical relation is, a relationship between sets of numbers or sets of element.	'What is the relationship between multiplication and division?'
Round	Approximate a number, normally to the nearest multiple of ten, to make it easier with which to calculate.	I would round the number 17 to 20 because it is three away from 20 but seven away from 10.

Addition and subtraction			
Column addition/subtraction	The formal written algorithms for addition and subtraction that are exemplified in Mathematics Appendix 1 of the 2014 national curriculum.	Addition and subtr $789+642$ becomes Answer: 1431	874-523 becomes $\begin{array}{r} 874 \\ -\quad 523 \\ \hline 351 \\ \hline \end{array}$ Answer: 351
Multiplication and division			
Factor	A number, that when multiplied with one or more other factors, makes a given number.	'The number six has 3 and 6.'	our factors: 1, 2,
Product	The result you get when you multiply two numbers.	'24 is the product	and 8.'
Fractions			
Sixths, sevenths, eighths, tenths	The fraction equal to one divided by six. The fraction equal to one divided by seven etc.	'One sixth plus fou five sixths'.	ixths is equal to
Length			
Distance from/to	How far away something is.	'What is the distance from house A to house B on the map?'	
Kilometre	A metric unit measure of length that is equal to one thousand metres.	'The distance from the school to Arun's house was exactly one kilometre.'	
Millimetre	A metric unit measure of length that is equal to one thousandth of one metre.	'The length of Philippa's ruler is 300 millimetres.'	
Perimeter	The perimeter of a 2-D shape is the total distance around its exterior.	D) \square RIM \square	

PM	The abbreviation p.m. stand for the Latin post meridiem, meaning after midday.	'The time is 9.00pm'.
Roman numerals	Roman numerals are a system of symbols used to represent numbers that were developed and used by the Romans. They do not use a place value system.	'The number twelve on this clock is represented by the Roman numerals XII, which is $10+1+1$.'
2d shape		
Irregular	In geometry, irregular is a term used to describe shapes that are not regular (see below).	The sides and the angles of this pentagon are not all equal so the pentagon is irregular.
Parallel	Line segments that can be described as parallel must be on the same plane and will never meet, regardless of how far either or both line segments are extended.	Closeres)
Perpendicular	A pair of line segments (or surfaces) can be described as perpendicular if they intersect at (or form) a right angle.	
Regular	Regular 2-D shapes (regular polygons) have angles that are all equal and side lengths that are all equal. Regular 3-D shapes (the Platonic Solids) are those that have congruent (exactly the same) faces of a single regular polygon.	'A square is a regular 2-D shape because all four angles are right angles and all four sides are the same length. A cube is a regular 3-D shape with six identical square faces.'

Prism	A prism is a 3-D solid with two identical, parallel bases and otherwise rectangular faces.
Square-	
based/triangular	
based pyramid	A pyramid is a 3-D shape with a 2- D shape (which gives the pyramid its name) as a base and triangular faces that taper to a point called a vertex or apex.
Acute angle	

Frequency	The number of times an event or a value occurs	'Football was chosen by most of the children in the class- it was the most frequent sport played at lunchtime'.
Horizontal	Horizontal refers to planes and line segments that are parallel to the horizon.	'The x-axis on a graph should be horizontal.'
Venn diagram	An illustration that uses circles to show the relationships among things or finite groups of things.	10

